Unimolecular Heterolysis of a Nitrogen-Nitrogen Bond

By CAROLINE C. JONES, MIGEL A. KELLY, MICHAEL L. SINNOTT,* and PAUL J. SMITH (Department of Organic Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS)

Summary Alkyl-aryl-triazenes, R-N=N-NHAr, can, when Ar contains electron-withdrawing groups, decompose in aqueous solution by simple unimolecular heterolysis, R-N=N-NHAr \rightarrow R-N $\stackrel{\pm}{=}$ N + \widetilde{N} HAr.

ALKYL-ARYL-TRIAZENES exist as a tautomeric mixture of forms (1) and (2).¹ Proton-donation to the arene-bound

$$\begin{array}{rcl} R-NH-N=N-Ar &\rightleftharpoons & R-N=N-NHAr \\ (1) & (2) \end{array}$$

nitrogen results in decomposition to give $ArNH_2$, N_2 , and products typical of deamination-reactions from the R fragment.² The kinetics of this process have been thoroughly examined in non-aqueous solvents, and it has been established that a proton is 'in flight' at the rate-determining transition state.³

We now report that in aqueous solution (1M-KCl at 25 °C) unimolecular departure of NHAr⁻ from the RN₂⁺ fragment also takes place. In addition to acid-catalysed processes analogous to those studied in non-aqueous solvents,⁴ a pHindependent hydrolysis of propyl-, benzyl-, and β -Dgalactopyranosylmethyl-(*p*-nitrophenyl)triazenes, with rate constants of $2 \cdot 3_4 \times 10^{-3}$, $9 \cdot_5 \times 10^{-5}$, and $3 \cdot 5 \times 10^{-5}$ s⁻¹, respectively, has been observed. The sole chromophoric product from the nitrophenyl unit is *p*-nitroaniline, and the examination of the products from decomposition of β -Dgalactopyranosyl-[¹⁴C]methyl-(*p*-nitrophenyl)triazene⁵ reveals two main radioactive components, in accordance with the observation of hydride-shift products when β -Dgalactopyranosylmethylamine is deaminated by nitrous acid.⁶ A normal deamination-pathway is being followed.

This normal deamination-pathway, catalysed by a variety of acidic species, must involve the alkane-diazonium ion as a free, solvent-equilibrated intermediate, for the following reasons. (i) The rates of H_3O^+ -catalysed decomposition of various triazenes R-NH-N=N-Ph correlate excellently with the acid dissociation constant of R-NH₃+, irrespective of the ease of generation of R^+ (Figure). (ii) No N-alkylated anilines are formed in this process. (iii) The H_3O^+ -catalysed reaction of Ph-CD₂NH-N=N-Ph shows an isotope effect $(k_{\rm H}/k_{\rm D})$ of 1.1 \pm 0.2; *i.e.* the C-H bond is not broken in the rate-determining step. (iv) Replacing IM-KCl as 'inert' electrolyte with 1M-NaN₃ in the hydrolysis of benzyl-(pmethoxyphenyl)-, benzyl-(p-methylphenyl)-, benzvl-(phenyl)-, propyl(phenyl)-, propyl-(p-methoxyphenyl)-, and propyl-(p-chlorophenyl)-triazenes in 0.1M-ethanolamine-HCl at pH 9 produces an average rate decrease of $17 \pm 19\%$.

Nothing is therefore happening at the crypto-cationic centre in the rate-determining transition state of the acidcatalysed process. That the same is also true of the pHindependent process is further demonstrated by the negligible change in the rate for propyl-(p-nitrophenyl)triazene when the electrolyte is changed to 1M-NaN₃ ($k \ 2.5_1 \times 10^{-3} \ s^{-1}$).

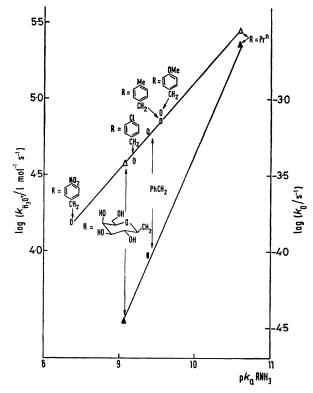


FIGURE. \bigcirc rates of H₃O⁺-catalysed hydrolysis of the triazenes R-N=N-NHPh; \bigcirc rates of uncatalysed hydrolysis of R-N=N-NH-C₆H₄NO₂-p as a function of the pKa of RNH₃⁺.

Despite the pK_a of p-NO₂C₆H₄NH₂ being 18.9,⁷ well above the pK_a of water, we are constrained by the following facts to propose that p-O₂NC₆H₄NH⁻ departs from the alkanediazonium ion without significant proton donation from, and consequent immobilisation of, a solvent molecule. (i) The pD-independent rate of hydrolysis of propyl-(p-nitrophenyl)triazene in D_2O is $2 \cdot 1_7 \times 10^{-3}$ s⁻¹, giving a solvent deuterium isotope effect of 1.0_8 . The H₂PO₄⁻⁻-catalysed hydrolysis of the same compound exhibits an isotope effect of 3.0. (ii) ΔS^{\ddagger} for the pH-independent hydrolysis of benzyl-(p-nitrophenyl)triazene is near zero $(+2 \pm 3 \text{ cal mol}^{-1} \text{ K}^{-1})$. (iii) The pH-independent hydrolysis of propyl-(3,5-dichlorophenyl)triazene has been detected (k 9 \times 10⁻⁵ s⁻¹). This datum, combined with that for the p-nitro-compound, gives a β_{1g} value, uncorrected for substituent effects on the (1) \rightleftharpoons (2) equilibrium, of -1.0.[†] In the acid-catalysed processes, eta_{1g} changes only slightly (from + 0.61 to + 0.44 \pm 0.05) as the pK_a of the catalysing acid changes by 8.3 units (from -1.74 for H_3O^+ to 6.55 for $H_2PO_4^-$). A drastic reversal of the sign of β_{1g} as the pK_{a} of the catalysing acid is increased a further 9.2 units to that of water is therefore unlikely.

† This estimate used pK_a values of ArNH_a⁺. If pK_a values of ArNH₂ are used, the β_{1g} value becomes -0.3.

J.C.S. CHEM. COMM., 1980

The rates we have measured for the pH-independent hydrolyses of alkyl-aryl-triazenes, after correction for the fraction of reactive tautomer, are thus the rates of the unimolecular reaction (1).

$$R-N=N-NHAr \rightarrow R-N=N+NHAr$$
(1)

We thank the S.R.C. for financial support.

(Received, 22nd January 1980; Com. 073.)

¹ K. Vaughan and M. F. G. Stevens, Chem. Soc. Rev., 1978, 377; for recent measurements on this equilibrium, see N. S. Isaacs and E.

¹ Rannala, J. C. S. Perkin II, 1974, 899; K. Vaughan, *ibid.*, 1977, 17; H. Iwamura, K. Albert, and E. Rieker, *Tetrahedron Letters*, 1976, 2627; J. M. J. Tronchet and F. Rachidzadeh, *Helv. Chim. Acta*, 1976, 59, 2855.
² E. H. White and H. Scherrer, *Tetrahedron Letters*, 1961, 758; H. Maskill, R. M. Southam, and M. C. Whiting, *Chem. Comm.*, 1965, 496; H. Maskill and M. C. Whiting, *J. C. S. Perkin II*, 1976, 1462; E. H. White, H. Maskill, D. J. Woodcock, and M. A. Schroeder, *Tetrahedron Letters*, 1969, 1713.

 ^a N. S. Isaacs and E. Rannala, J. C. S. Perkin II, 1974, 901.
 ^a V. Zverina, M. Remes, J. Divis, J. Marhold, and M. Matrka (Coll. Czech. Chem. Comm., 1973, 38, 251) report data in aqueous buffers, ⁶ M. L. Sinnott and P. J. Smith, Biochem. J., 1978, 175, 525.
⁶ B. Coxon and H. G. Fletcher, J. Amer. Chem. Soc., 1964, 86, 922.
⁷ R. A. Cox and R. Stewart, J. Amer. Chem. Soc., 1976, 98, 488.